Preliminary communication

TRIRUTHENIUM CLUSTERS CONTAINING DIMETHYLAMINO-SUBSTITUTED ALLYL AND ALLENYL LIGANDS: THE TRANSMISSION OF ELECTRONIC SUBSTITUENT EFFECTS THROUGH CLUSTERS

SILVIO AIME*, GIORGIO JANNON, DOMENICO OSELLA

Istituto di Chimica Generale ed Inorganica, Università di Torino, Corso Massimo d'Azeglio 48, 10125 Torino (Italy)

and ANTONY J. DEEMING*

Department of Chemistry, University College London. 20 Gordon Street, London WCIH 0AJ (Great Britain)

(Received March 23rd, 1981)

Summary

The NMe₂ substituent in $CH_3C \equiv CCH_2NMe_2$ facilitates oxidative addition to $Ru_3(CO)_{12}$ to give the isomeric allenyl cluster $HRu_3(CO)_9(MeC = C = CHNMe_2)$ and allylic cluster $HRu_3(CO)_9(MeCCHCNMe_2)$. The barrier to rotation about the internal ligand C—NMe₂ bond is sensitive to the nature of L in $HRu_3(CO)_8L-(MeCCHCNMe_2)$, even though L is remote from this bond, and also to protonation of the cluster. Lower barriers are associated with increased electron-availability on the cluster.

The oxidative addition of non-terminal alkynes (L) to $\operatorname{Ru}_3(\operatorname{CO})_{12}$ gives two isomeric compounds of general formula $\operatorname{HRu}_3(\operatorname{CO})_9(\operatorname{L-H})$. The kinetically favoured isomer contains a $1-\eta^1-1, 2-\eta^2$ -allenyl ligand which isomerises by hydrogen atom migration to the more stable di- $\eta^1-\eta^3$ -allyl isomer [1]. We are currently examining the reactions of metal carbonyl clusters with functionalised alkynes to see how the function modifies the reaction pathways and to generate novel clusters.

The reaction between $\operatorname{Ru}_3(\operatorname{CO})_{12}$ and $\operatorname{CH}_3C \equiv \operatorname{CCH}_2\operatorname{NMe}_2$ occurred readily in refluxing cyclohexane and after 1 h two isomeric products were isolated, cluster 1 (50%) and cluster 2 (40%); these were characterised by ¹H NMR, IR and mass spectra. Clusters 1 and 2 are of the usual type obtained from simple non-terminal alkynes, but the Me₂N group causes a marked acceleration of their rates of formation and a marked increase in yield. As in other cases,

PHYSICAL	DATA FOR THE COMPO	UNDS PRI	EPARED				
Compound	<i>p</i> (CO) (cm ⁻¹) ^a	NMN H	(y, ppm) ^b			τ _c (°c) ^c	Rotational
		NMe ₂	CMe	СН	H-ny		energy barrier (hJ mol ⁻¹) ^d
1	2083m, 2053s, 2030vs, 2013m, 2000m, 1988w	3.30(s) 2.95(s)	2.52(s)	7.31(s)	-18,83(s)	0	57,7
ęı	2089m, 2060s, 2034vs, 2018m, 2004m, 1996m,	3,55(s) 3,30(à)	2.72(s)	6.00(d) (J(HH) 4.0)	-17.68(d) (J(HH) 4.0)	25	64,4
3a	1976s, 2038vs, 2022s, 2076s, 2038vs, 2022s, 1999m, 1989m	3.31(s) 2.95(s)	2.60(d) (J(PH) 7.0)	6.43(d) (J(HH) 3.0)	-18.00(dd) (J(HH) 3.0,	14	61.1
3b	2069s, 2029vs, 2012s, 1996w, 1987ms, 1970m	3.49(s) 3.28(s)	2.14(d) (J(PH) 4.0)	5.86(d) (J(HH) 3.0)	J(PH) 18.0) -17,67(dd) (J(HH) 3.0,	-10	56.9
30	2070s, 2030vs, 2010vs, 1984s, 1964m, 1947w	3.48(s) 3.24(s)	2.61(d) (J(PH) 3.0)	5.90(d) (J(HH) 3.0)	J(PH) 19.0) -17.97 (J(HH) 3.0,	15	55,6
4	21035, 2074vs, 2060s, 2035s, 2020m	3.58(s) 3.47(s)	2.55(d) (J(PH) 2.0)	6.33(d) (J(HH) 3.0)	J(PH) 16.0) -15.15(dd) J(PH) 1.5, J(PH) 17.5) -18.76(ddd) (J(HH) 1.5, 3.0, J(PH) 17 5)	>>25	
a 1, 2, 3a, 2 coalescence	31) and 36 measured in n-lic of NMe ₂ singlets (± 1°C),	exane; 4 m d Estimut	easured in CH ted from $T_{c, \ l}$	Cl ₃ /CF ₃ COOH	solution. ^b Measure quation.	d in CDCl ₃ i J	in Hz. ^c T _c for

د

C16

TABLE 1

compound 1 is converted into 2 almost quantitatively in refluxing n-heptane (1 h) [2].

Since each compound shows two separate ¹H NMR singlets for the NMe₂ group at low temperatures, the C—NMe₂ bond must have some multiple-bond character [3]. These singlets coalesce on warming; the coalescence temperatures (T_c) are 0°C for 1 and 25°C for 2. The other ¹H NMR signals are temperature-independent. We considered the possibility that the rotational energy barrier for the C—NMe₂ bond might be a sensitive measure of variations in electron density at the metal cluster since the barrier should increase with increasing electron-withdrawal by the cluster. This could then provide a simple, directly accessible parameter as an alternative to the spectral parameters (IR and NMR) commonly used. We have chemically modified compound 2 to test this idea.

Group V donor ligands $(PPr_{3}^{i}, PPh_{3}, and P(OPh)_{3})$ react with 2 (mole ratio 2:1) in refluxing cyclohexane (1 h) to give only one product, compound 3, in each case. ¹H NMR spectra indicate that a CO ligand on Ru(1) is replaced rather than one on the corresponding atom Ru(2). Possibly the observed π -donation from NMe₂ deactivates the CO ligands on Ru(2) towards substitution, and certainly those on Ru(1) are significantly more labile [4].

The ¹H NMR spectra of compounds 3 are quite similar to that of 2 except for ³¹P-coupling and for lower temperatures for coalescence of the NMe₂ singlets (see Table 1). The rotational barriers are in the order 2 > 3a > 3b > 3c; that is, the barriers decrease with increasing σ -donor or decreasing π -

acceptor abilities of the ligands at Ru(2). The simplest explanation is that the more electron-rich cluster allows less donation from the NMe₂ group and less multiple bonding in the C-NMe₂ bond, but it is interesting that this bond is sensitive to substitution at a remote part of the cluster. It would be of interest to know whether the effect is transmitted through the π -system of the allyl ligand or through the metal-metal bond.

The same effect shows up when a few drops of CF_3CO_2H are added to a chloroform solution of 3b; this gives the dihydrido cation 4 in solution, for which two NMe₂ singlets are observed at room temperature. The coalescence temperature and rotational barrier are significantly raised, consistent with an increased π -donation from the NMe₂ group. It is noteworthy also, that the metal atoms are more basic than the nitrogen atom.

These results show how a specific property of a functional group, in this case an internal ligand rotation, may be used to assess electronic demands of the metal atoms and to evaluate cooperative effects within clusters.

Acknowledgements

We thank Johnson Matthey Ltd. for a loan of $RuCl_3$ and NATO for support (Research Grant No. 1624/78).

References

- 1 H.D. Kaesz and H.P. Humphries, Progr. Inorg. Chem., 25 (1979) 146.
- 2 O. Gambino, M. Valle, S. Aime and G.A. Vaglio, Inorg. Chim. Acta, 8 (1974) 71.
- 3 H. Kessler, Angew. Chem. Int. Edn., 9 (1970) 219.
- 4 S. Aime, L. Milone, C. Jangala, E. Rosenberg, E. Sappa and D. Skinner, Inorg. Chem., 19 (1980) 1571.